
Roto
A fast and safe scripting language for Rust
Oct 09 2025, EuroRust

Terts Diepraam, NLnet Labs

Introduction

Terts Diepraam

Software Engineer at NLnet Labs

Organizer of RustWeek

NLnet Labs

Non-profit organization

Been around for 25 years

Focused on DNS and routing

NSD, Unbound, Routinator, etc.

NLnet Labs

Historically all in C

All new projects are in Rust

E.g. Cascade, Krill, Routinator, Rotonda and more

Rotonda

A BGP collector written in Rust

read: specialized database

Lots of data coming in and going out

We want to give people flexibility!

Rotonda: simplified

Inputs Filters Store Filters Outputs

What language do users write those filters in?

Solution: scripting language?

All have one or more drawbacks:

• Too constrained
• Too slow
• No type checking

We obviously did the only sensible thing…

… we made our own

Enter: Roto

Roto in a nutshell

Embedded in Rust applications

Statically & strongly typed

Friendly error messages

Compiled to machine code

Handwavy speed expectations

Perl

Python
Lua

Roto

Rust

(not benchmarked much yet, but looks good so far)

Example: A simple script

We write a simple Roto script…

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100;
 }
 x
}

Example: compiling a script

…then we compile it and run it from Rust!

use roto::Runtime;
let rt = Runtime::new();
let mut pkg = rt.compile("script.roto").unwrap();
let f = pkg.get_function::<_, fn(i32) -> i32>("clamp").unwrap();
let y = f.call(&mut (), x);

Example: Error messages

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100.0;
 }
 x
}

→

Example: Error messages (cont'd)

I try to channel my inner @ekuber for the messages.

The output is powered by ariadne

Example: Error messages 2

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100;
 }
 x
}

fn clamp() {}→

Example: Error messages

How it works

We have the following steps:

• Parsing
• Type checking
• Lowering to Cranelift IR
• Compile to machine code

Cranelift is great!

The unsafest unsafe

But Cranelift gives us just a pointer and a buffer of code.

So we have to transmute that *const u8 to a function pointer!

Super-duper unsafe!

Mitigation: Valgrind

Example: Registration

use glam::Vec3; // just some random type
use roto::{Runtime, Val, library};

let lib = library! {
 #[copy] type Vec3 = Val<Vec3>;

 impl Val<Vec3> {
 fn x(v: Val<Vec3>) -> f32 {
 v.x
 }
 }
};

let rt = Runtime::from_lib(lib).unwrap();

Example: Registration

fn add_x_components(a: Vec3, b: Vec3) -> f32 {
 a.x() + b.x()
}

Example: Registration

let mut pkg = rt.compile("script.roto").unwrap();
let f = pkg.get_function("add_x_components").unwrap()

let a = Vec3::new(3.0, 0.0, 0.0);
let b = Vec3::new(5.0, 0.0, 0.0);
let out: f32 = f.call(&mut (), Val(a), Val(b));
assert_eq!(out, 8.0);

Registration restrictions

All registered types must implement Clone

Everything else should be in Rc or Arc

Registered types must be wrapped in Val(..)

No serialization necessary!

DEMO

Tooling

Tree-sitter grammar for syntax highlighting

Documentation generator for Sphinx

More in the future (…lsp?)

Current limitations

Roto might not fit your needs yet:

• No lists yet
• Therefore, no for loops (only while)
• No constants defined in scripts
• No custom enum
• No generics

We take this thing seriously!

Backed by a non-profit organization.

Integral part of a major product.

Free and open source forever.

Join us for RustWeek 2026!

May 18-23, 2026 – Utrecht, The Netherlands

See rustweek.org

https://2026.rustweek.org

Links

More about Roto
• github.com/NLnetLabs/roto
• roto.docs.nlnetlabs.nl

Find me online
• terts.dev
• terts@nlnetlabs.nl
• @mastodon.online@tertsdiepraam

Feel free to come up and talk to me!

Slides made with Typst.

Slides, recording & links:

https://terts.dev/talks/roto-eurorust25

https://github.com/NLnetLabs/roto
https://roto.docs.nlnetlabs.nl
https://terts.dev
mailto:terts@nlnetlabs.nl
https://mastodon.online@tertsdiepraam
https://terts.dev/talks/roto-eurorust25

